Чиллеры с конденсатором водяного охлаждения и винтовыми компрессорами

Модели SWS/SWR типоразмеры от 1002 до 4402 (R 407C) Модели SWS/SWR типоразмеры от 1602 до 4802 (R 134a)

Холодопроизводительность от 291 до 1148 кВт (R 407C)

Холодопроизводительность от 272 до 1118 кВт (R 134a)

Техническое описание TM SWS-A.1GB Дата: март 2006

Замена: TM SWS-A.1GB/07.04

Конструктивные особенности

Общие сведения

В **чиллерах SWS с конденсатором водяного охлаждения** установлены высокопроизводительные полугерметичные винтовые компрессоры с высоким коэффициентом сжатия.

Чиллеры могут работать на артезианской и на оборотной воде.

Агрегаты SWS занимают мало места на полу и предназначены для установки в техническом помещении. Их можно оснастить кожухами с или без звукоизоляции, позволяющими значительно снизить уровень излучаемого шума.

Агрегаты предназначены для работы с хладагентом R 407С или R 134A. Холодильный коэффициент (СОР) чиллеров, работающих на хладагенте R 134a, существенно выше.

Чиллеры **имеют два независимых холодильных контура** в каждом из которых установлены полугерметичный двухвинтовой компрессор, двухконтурный («dual circuit») кожухотрубный испаритель и два кожухотрубных конденсатора.

Чиллеры модельного ряда SWS могут поставляться без конденсаторов. В этом случае на концах нагнетательной и жидкостной линий установлены запорные клапаны, к которым на месте монтажа присоединяют выносные конденсаторы. Такие модели называются **«чиллерами SWS без конденсатора».**

Чиллеры SWS выпускаются в **трех исполнениях**, каждое из которых включает в себя **12 типоразмеров** чиллеров, работающих на хладагенте R 407C (номинальная холодопроизводительность от 291 до 1148 кВт), и **15 типоразмеров** чиллеров, работающих на хладагенте R 134A (номинальная холодопроизводительность от 272 до 1118 кВт).

SWS/SWR STD: Чиллеры в стандартном исполнении без специальных устройств уменьшения излучаемого шума.

SWS/SWR LN: Чиллеры в малошумном исполнении. Состав оборудования такой же, что у чиллеров в стандартом исполнении, но с кожухом из листовой стали для снижения уровня излучаемого шума. Кожух может поставляться в качестве принадлежности (для установки на месте монтажа) или может быть установлен на заводе-изготовителе. В последнем случае чиллер представляет собой агрегат в стандартном исполнении плюс комплект для снижения шума.

SWS/SWR ELN: Чиллеры в сверхмалошумном исполнении. Состав оборудования такой же, что у чиллеров в малошумном исполнении, но кожух покрыт слоем звукоизолирующего материала. Кроме того, в качестве средств дополнительного уменьшения шума в нагнетательной линии компрессора установлены виброкомпенсаторы и гибкие трубы.

Соответствие стандартам

Чиллеры всех типоразмеров и исполнений соответствуют требованиям следующих нормативных документов:

- ✓ Директива по машинам EEC 98/37 (EN 292/1, EN 292/2)
- ✓ Директива по низковольтному оборудованию EEC 73/23 (EN 60204-1, EN 60439-1)
- ✓ Директива по электромагнитной совместимости СЕЕ 89/336, изменение Директивы СЕЕ 92/31 (EN 50081-1, EN 50082-2)
- ✓ Директива по оборудованию, работающему под давлением: 97/23/CE

Каркас

Каркас изготовлен из усиленной оцинкованной стали. Детали конструкции скреплены винтами и болтами. Все оцинкованные части покрыты эмалью горячей сушки белого цвета (RAL 9001).

Полугерметичные винтовые компрессоры

В агрегатах SWS установлены полугерметичные двухвинтовые компрессоры.

Все компрессоры снабжены стандартной электронной системой управления со следующими функциями:

- защита от перегрева и перегрузки;
- контроль правильного направления вращения двигателя;
- контроль фаз.

Для каждого компрессора предусмотрено:

- уменьшение производительности при помощи электромагнитных клапанов;
- четыре ступени производительности: 25 % (при пуске и откачке), 50 %, 75 % и 100 %;
- исполнение с шестью ступенями производительности (25 % , 50 % , 63 % , 75 % , 87 % и 100 %).

Кроме того, для повышения надежности винтовых компрессоров в агрегатах SWS предусмотрены:

- Датчик температуры электродвигателя;
- Датчик температуры в линии нагнетания;
- Впрыскивание жидкости (опция).

Испаритель и конденсаторы

Испаритель и конденсаторы - кожухотрубные.

Испаритель – двухконтурный, теплоизолированный слоем вспененного материала с закрытыми порами толщиной 19 мм.

Распределительные камеры конденсаторов являются съемными, что позволяет извлекать трубы для проведения технического обслуживания.

Холодильные контуры

Агрегаты имеют два независимых холодильных контура, их компоненты указаны на схеме холодильного контура.

Электрический шкаф

Корпус электрического шкафа – металлический с одной или двумя дверцами (в зависимости от модели чиллера), степень защиты IP42. Шкаф закреплен в торце агрегата.

Устройства защиты и управления

Все чиллеры SWS оснащены следующими устройствами:

Устройства защиты:

- Вводной выключатель и выключатель аварийного останова.
- Реле высокого давления (по два в каждом контуре). Реле срабатывают при давлении 25 бар (в контурах с R 407C) и 22 бар (в контурах с R 134A); ручной возврат в рабочее состояние с панели шкафа управления.
- Датчик-реле низкого давления (по одному в каждом контуре). Реле срабатывает при давлении 1 бар. Ручной возврат в рабочее состояние с панели шкафа управления. Считывание показаний давления всасывания.
- Датчик-реле защиты от замораживания (настройка срабатывания плюс 3 °C).
- Датчик максимальной температуры нагнетания (показания не отображаются).
- Предохранительный клапан в нагнетательной линии (настройка срабатывания 29 бар в контуре с R 407C и 24,5 бар в контуре с R 134A).

Конструктивные особенности (продолжение)

- Предохранительный клапан испарителя (настройка срабатывания 29 бар в контуре с R 407C и 16 бар в контуре с R 134A).
- Дифференциальное реле давления воды в испарителе. Реле срабатывает при перепаде давлений 104 мбар, что соответствует примерно 50 % номинального расхода воды.

Датчики:

- Датчики высокого и низкого давления (по одному в каждом контуре).
- Датчик температуры воды на входе испарителя.
- Датчик температуры воды на выходе испарителя.
- Датчик температуры воды на входе конденсатора.
- Датчик температуры воды на выходе конденсатора.

Контроллер

Чиллеры SWS оснащены микропроцессорным контроллером, выполняющим следующие функции:

Управление электромагнитным клапаном жидкостной линии

- Пуск компрессора происходит при открытом электромагнитном клапане.
- Откачка при закрытом клапане.
- Управление работой компрессора
- Включение/отключение компрессора.
- Управление задержкой включения.
- Управление частотой вращения компрессоров
- Поддержание заданной температуры холодной или горячей воды на входе или выходе агрегата:
- Поддержание заданной температуры на входе агрегата по пропорциональному (П) или пропорционально-интегральному (ПИ) закону регулирования с настраиваемой постоянной времени интегрирования.
- Поддержание заданной температуры воды на выходе агрегата.

В стандартном исполнении осуществляется поддержание заданной температуры на входе чиллера по П-закону регулирования.

- Защита испарителя от замораживания
- Реакция системы на аварийные сигналы высокого или низкого давления
- Дистанционное управление:
- Пуск/останов агрегата.
- Аварийная сигнализация
- Управление по расписанию (четыре отрезка времени с независимыми уставками).
- ▶ Ведение журнала аварий.
- Подсчет времени работы компрессора и насоса (если установлен).
- ⇒ Система регулирования с двумя уставками.

На ЖК-дисплее контроллера в интуитивно-понятном виде отображаются:

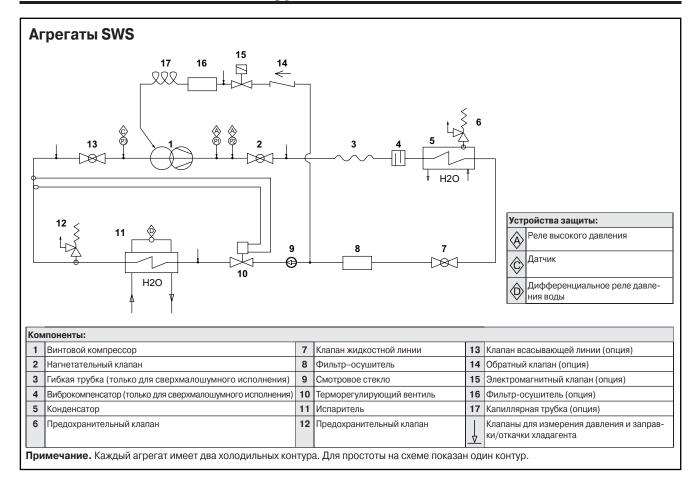
- Давление нагнетания в контуре 1 и 2.
- Давление всасывания в контуре 1 и 2.
- Температура воды на входе испарителя.

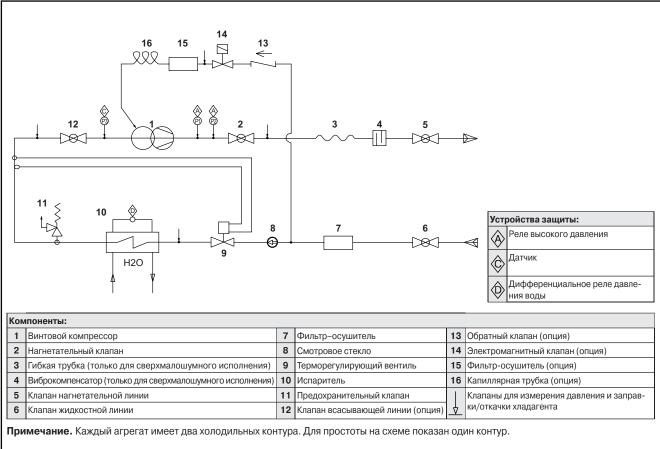
- Температура воды на выходе испарителя.
- Аварийные и рабочее состояния:
 - > Температура воды на входе испарителя.
 - > Температура воды на выходе испарителя.
 - > Высокое и низкое давления.
 - ➤ Срабатывание защиты испарителя от замораживания.
 - ➤ Недостаточный расход воды.
 - > Чередование фаз.
 - > Срабатывание тепловой защиты компрессора.
 - > Отключение пульта дистанционного управления.
- Состояние дистанционного выключения.
- Состояние выключателя принудительной разгрузки компрессоров или выбора второй уставки.
- Сигнализация включенного состояния компрессоров (контакт).
- Сигнализация включенного состояния агрегата (контакт).
- Сигнализации наличия аварии (контакт).

Устанавливаемые на заводе-изготовителе дополнительные принадлежности

- Конденсаторы для артезианской воды.
- Всасывающий клапан.
- ▶ Контур впрыскивания жидкости.
- Электронные регулирующие вентили.
- Комплект для снижения шума (устанавливается на заводе-изготовителе или поставляется отдельно).
- ▶ Датчик уровня масла в компрессоре.

Принадлежности, устанавливаемые на месте монтажа


- Манометры.
- ▶ Пружинные виброизолирующие опоры.
- ▶ Пульт дистанционного управления
- Плата последовательного интерфейса RS 485 Modbus для подключения к системе управления инженерным оборудованием здания.
- Система управления группой чиллеров: Переключения режимов «ведущий»/«ведомый». «Ведущий» агрегат контролирует работу до 4 «ведомых», работающих на общий водяной контур.
- → «Черный ящик»:


Электронная плата памяти для записи информации, необходимой для проведения технического обслуживания:

- Последние аварийные сигналы (дата и тип сигнала).
- Значения температур на входе и выходе агрегата.
- Значения давления всасывания и нагнетания.
- → Модем GSM:

Для передачи информации в виде SMS-сообщений (SIM-карта в комплект поставки не входит).

Схемы холодильных контуров

Предельные эксплуатационные характеристики

Чиллеры, работающие на хладагенте R 407C

	Модел	sws	SWR			
		Температура воды °С		От +5 до +15		
	Температура жидкости на выходе испарителя	Температура рассола	°C	От -5	до +4	
Режим охлаждения		Дифференциал температуры	К	От 3 до 8		
олимдония	Расход (1)			См. раздел «Поправочный коэффициент		
	Гидравлическое сопротивление (1)			на гидравлическое сопротивление при низкой температуре»		
	Максимальное рабочее давление в водяной полости				10	
Температура жидкости на выходе агрегата				От 30 до 60 для оборотной воды От 15 до 30 для артезианской воды		
Режим теплового насоса	Дифференциал температур			От 3 до 8 (для оборотной воды) 15 (для артезианской воды)		
	Расход (1)			См. раздел «Поправоч- ный коэффициент на		
	Гидравлическое сопротивление (1)			гидравлическое сопро- тивление при низкой температуре		
	Максимальное рабочее дав	бар	10			

⁽¹⁾ При номинальных условиях

Чиллеры, работающие на хладагенте R 134A

	Модел	sws	SWR			
	Температура воды		°C	От +5 до +15		
Режим охлаждения	Температура жидкости на выходе испарителя	Температура рассола °C		От -3 до +4		
		Дифференциал температуры	K	От 3	до 8	
	Расход (1)			См. раздел «Поправочный коэффициент		
	Гидравлическое сопротивление (1)			на гидравлическое сопротивление при низкой температуре»		
	Максимальное рабочее дав	бар	10	10		
	Температура жидкости на выходе агрегата			От 30 до 60 для оборот- ной воды От 15 до 30 для артези- анской воды		
Режим теплового насоса	Дифференциал температур			От 3 до 8 (для оборотной воды) 15 (для артезианской воды)		
	Расход (1)			См. раздел «Поправоч- ный коэффициент на		
	Гидравлическое сопротивление (1)			гидравлическое сопро- тивление при низкой температуре»		
	Максимальное рабочее давление в водяной полости			10		

⁽¹⁾ При номинальных условиях

Поправочные коэффициенты

Поправочные коэффициенты на загрязнение

	Испаритель		Конденсатор				
Коэффициент загрязнения (м² °С/кВт)	загрязнения холодопроизводи-		Коэффициент загрязнения (м² °C/кВт)	Коэффициент холодопроизводи- тельности	Коэффициент потребляемой мощности		
0,044	1,000	1,000	0,044	1,000	1,000		
0,088	0,987	0,995	0,088	0,987	1,023		
0,176	0,964	0,985	0,176	0,955	1,068		
0,352	0,915	0,962	0,352	0,91	1,135		

Поправочные коэффициенты на использование раствора этиленгликоля

Массовая концентрация этиленгликоля %	10	20	30	35	40
Температура замерзания °C	-4	-10	-17	-21	-25
Поправочный коэффициент холодопроизводительности (1)	0,995	0,985	0,97	0,963	0,955
Поправочный коэффициент потребляемой мощности (1)	0,998	0,995	0,985	0,983	0,98
Поправочный коэффициент расхода жидкости	1,015	1,05	1,085	1,123	1,16
Поправочный коэффициент гидродинамического сопротивления (2)	1,07	1,16	1,235	1,283	1,33

⁽¹⁾ Поправочные коэффициенты применяются, если температура раствора этиленгликоля на выходе больше или равна 7 °C. Для температур, меньше 7 °C, см. таблицу «Поправочные коэффициенты для низкой температуры».

Поправочные коэффициенты для низкой температуры

Температура воды на выходе агрегата	°C	7	4	2	0	-2	-4	-6	-8
Минимальная концентрация этиленгликоля	%	0	10	10	20	20	30	30	35
Поправочный коэффициент холодопроизводительности		1	0,887	0,816	0,748	0,685	0,624	0,568	0,513
Поправочный коэффициент потребляемой мощности		1	0,94	0,9	0,865	0,826	0,788	0,753	0,718

Поправочные коэффициенты гидравлического сопротивления для работы при низкой температуре

Концентрация этиленгликоля, % масс.	Температура раствора этиленгликоля, °C	Поправочный коэффициент гидравлического сопротивления		
	5	1,071		
10	4	1,076		
10	3	1,081		
	2	1,085		
	1	1,193		
20	0	1,2		
20	-1	1,208		
	-2	1,215		
	-3	1,299		
20	-4	1,306		
30	-5	1,32		
	-6	1,333		

⁽²⁾ Поправочные коэффициенты применяются, если температура раствора этиленгликоля на выходе больше или равна 5 °C. Для температур, меньше 5 °C, см. таблицу «Поправочные коэффициенты гидравлического сопротивления при низкой температуре».